martes, 13 de diciembre de 2011

Post para pensar.



GRANDES RETOS EN LA PLATICA MATEMATICA ; NO MAS:
(copypaste en 3..2...1..)

El 20 de mayo de 2000 un mecenas ofrece 7 millones de dólares por resolver los siete enigmas matemáticos del siglo. La lista recoge los problemas cruciales para el desarrollo futuro de las ciencias exactas.

Exactamente cien años después de que el científico alemán David Hilbert definiera los 23 grandes problemas que la Matemática del siglo XIX había sido incapaz de resolver, el empresario norteamericano Landon Clay ha ofrecido un millón de dólares a quienes solventen cada uno de los siete enigmas fundamentales que, según su equipo de asesores, han derrotado a La Matemática del siglo XX. De los 23 retos de Hilbert, 20 han sido resueltos o abordados satisfactoriamente, y dos ya no se consideran cruciales. El otro vuelve a aparecer en la nueva lista.

El empresario Clay es el fundador del Instituto de Matemáticas Clay, un centro con sede en Cambridge (Massachusetts) dedicado a los estudios avanzados en ciencias exactas. Su panel de asesores incluye a Andrew Wiles, el matemático de la Universidad de Princeton que logró en 1995 demostrar el escurridizo teorema de Fermat, un enigma que había atraído durante 350 años a los matemáticos de todo el mundo. Los otros asesores son Alain Connes, del Collége de France, Edward Witten, del California lnstitute of Technology, y Arthur Jaffe, de Harvard. Clay sabe muy bien dónde mete su dinero.

El empresario lanzó su oferta en París, en los actos organizados por el Collége de France para celebrar el centenario de la lista propuesta por Hilbert en 1900, que ha marcado buena parte de la investigación matemática del siglo XX. Los siete enigmas, según los expertos que tos han seleccionado, conducirán, una vez resueltos, a enormes avances en los campos del cifrado de datos (encriptado) y las ciencias aeroespaciales. También abrirán a la Matemática áreas inexploradas.

Los siete enigmas representan los grandes problemas no resueltos de la Matemática del siglo XX, dijo Wiles en París. Esperamos que ofrecer un premio por ellos inspire y estimule a las futuras generaciones de matemáticos. En efecto, ganar 1 millón de dólares por resolver un problema puede ser una buena fuente de inspiración. El Premio Nobel está dotado actualmente con menos dinero. Jaffe añadió: No hay límite de tiempo. La dificultad es de tal magnitud que ningún asesor de Clay espera que surja un ganador en un plazo breve. Algunos expertos independientes dudan incluso de que el instituto de CLay tenga que deshacerse de sus millones alguna vez.

Lo que sigue es una exposición informal de Los enigmas. Los especialistas pueden consultar sus formalizaciones en la página web del Instituto de Matemáticas Clay http:\\www.cLaymath.org

1. El problema P contra NP. El matemático Stephen Cook, que formuló este problema en 1971, lo explica con el siguiente ejemplo., Es sábado por la noche y llega usted a una fiesta abarrotada de gente. La anfítriona Le dice: Creo que conoces a Rosa, aquella chica de la esquina que lleva un vestido rojo. A usted Le bastará una fracción de segundo para verificar si la anfitriona está en lo cierto o no. Pero si en vez de eso La anfitriona le hubiera dicho mira por ahí a ver si., conoces a alguien, usted puede tardar tres horas en hallar La respuesta. Por mentira que parezca, esta cuestión supone un problema, enorme para los lógicos y para Los científicos de la computación. La explicación de Las siglas P y NP no ayuda mucho: se refieren a los’ tiempos polinómico y polinómico no determinista.

2. La hipótesis de Riemann. Los números primos (1, 2, 3, 5, 7,11...) no parecen seguir ningún patrón regular, pero el matemático alemán Georg Riemann propuso en el siglo XIX que su frecuencia guarda una estrecha relación con eL comportamiento de una función matemática (llamada zeta). Las predicciones de Riemann se halla confirmado para muchos casos, pero todavía se precisa una demostración general. Este es el único de los siete problemas de Clay que ya estaba presente en la Lista de Hilbert.

3. La teoría de Yang-Milis. Hace casi 50 años, los físicos Yang y Mills descubrieron ciertas relaciones entre la Geometría y las ecuaciones de la física de partículas que luego resultaron de gran utilidad para unificar tres de Las interacciones fundamentales de La materia en una sola teoría. A pesar de ello, nadie ha demostrado que las ecuaciones de Yang-Mills tengan soluciones compatibles con la mecánica cuántica.

4. Las ecuaciones de Navier-Stokes. Describen ciertos comportamientos de los fluidos, como las turbulencias provocadas por un avión a reacción o las ondas que forma una barca en el agua. Pero, insólitamente, nadie sabe cómo resolver estas ecuaciones.

5. La conjeturo de Birch y Swinnerton-Dyer. Uno de los problemas de Hilbert planteaba si existe algún método para saber si las ecuaciones deL tipo xn +yn= zn tienen soluciones que sean números enteros. Yu Matiyasevich demostró en 1970 que no hay ningún método general. Sin embargo, los matemáticos que dan nombre a esta conjetura propusieron algunos métodos parciales que están por demostrar.

6. La conjetura de Hodge. Los matemáticos han aprendido a investigar las formas de los objetos complicados a base de descomponerlos en multitud de bloques geométricos simples. Estos modelos son muy prácticos, pero hacen trampas al añadir algunos bloques que no tienen ninguna interpretación geométrica.

7. La conjeturo de Poincaré. Las conclusiones que alcanzó Poincaré, el rival francés de Hilbert, sobre tas esferas en el espacio de tres dimensiones han resultado imposibles de trasladar al espacio de cuatro dimensiones. Los matemáticos llevan cien años intentándolo y no se rinden. (Ver: Una Solución del Problema)

Jules Henri Poincaré (Nacio, Francia, 29 de abril de 1854 - † París, 17 de julio de 1912), generalmente conocido como Henri Poincaré, fue un prestigioso matemático, científico teórico y filósofo de la ciencia. Poincaré es descrito a menudo como el último "universalista" (luego de Gauss) capaz de entender y contribuir en todos los ámbitos de la disciplina matemática. En 1894 descubrió el grupo fundamental de un espacio topológico.

En el campo de la mecánica elaboró diversos trabajos sobre las teorías de la luz y las ondas electromagnéticas, y desarrolló, junto a Albert Einstein y H. Lorentz, la Teoría de la Relatividad restringida (también conocida como Relatividad especial). La conjetura de Poincaré es uno de los problemas recientemente resueltos más desafiantes de la topología algebraica, y fue el primero en considerar la posibilidad de caos en un sistema determinista, en su trabajo sobre órbitas planetarias. Este trabajo tuvo poco interés hasta que comenzó el estudio moderno de la dinámica caótica en 1963.

En 1889 fue premiado por sus trabajos sobre el problema de los tres cuerpos. Algunos de sus trabajos más importantes incluyen los tres volúmenes de Los nuevos métodos de la mecánica celeste (Les méthodes nouvelles de la mécanique céleste), publicados entre 1892 y 1899, y Lecciones de mecánica celeste, (Léçons de mécanique céleste, 1905). También escribió numerosas obras de epistemología, propedéutica, metodología y divulgación científica que alcanzaron una gran popularidad, como Ciencia e hipótesis (1901), Ciencia y método (1908) y El valor de la ciencia (1904). (Wikipedia)

Fuente Consultada: Los Matemáticos Que hicieron Historia - Alejandro Venturini


Un chapuzón antes de seguir con una apreciación sobre la resoluta o no conjetura de Poincard.





El teorema de Poincaré-Perelman (antes Conjetura de Poincaré)

t3sphere_port.jpg

Reproduzco un artículo que escribí en este blog hace algún tiempo, dado el renovado interés por la Conjetura de Poincaré y la demostración de Grigory Perelman del mismo. Tras Andrew Willes, el mundo matemático nos vuelve a mostrar la imagen de un matemático que se encierra durante años para conseguir lo que las mejores mentes del planeta no han logrado: dar cumplida respuesta a una pregunta que lanzó al mundo un matemático de otra generación.

Como ya dijimos en alguna ocasión una conjetura es un teorema al que le falta la parte más interesante: la demostración. Dicho de otro modo: una conjetura nada tiene que ver con un teorema; es una simple afirmación. Aunque a veces se pervierta la nomenclatura, como en el caso del “Ultimo teorema de Fermat”, que no tuvo tal rango hasta que Wiles lo demostró hace pocos años.

Visto así, parece que una conjetura tiene poco valor, y es poco más que una opinión. Así es en parte, de hecho muchas conjeturas resultaron falsas a la postre. Sin embargo normalmente tienen el valor de ser agudas observaciones realizadas por especialistas, retos lanzados al mundo para que las mejores mentes del planeta se esfuercen en desentrañar sus misterios. Así ocurre con una de las más famosas: la Conjetura de Poincaré

Pasamos a explicar en qué consiste la conjetura, tan de moda últimamente a raíz de la demostración (pendiente de refrendar por lo que yo sé, pero probablemente correcta) del matemático ruso Grigory Perelman

La Conjetura de Poincaré es una afirmación topológica. Una vez explicamos aquí que la topología tiene un estatus muy especial dentro de la matemática. Supondremos que el lector sabe qué estudia la topología por tanto.

A veces, los matemáticos tienen algo de naturalistas; taxónomos más concretamente. Les gusta clasificar cosas y ponerles etiquetas. Este gusto es totalmente lógico; para clasificar atendemos a las propiedades más esenciales de las cosas e investigamos la diversidad de las mismas. El procedimiento básico suele ser el siguiente: se establecen relaciones de equivalencia entre los objetos; no relaciones cualesquiera, sino relaciones que se consideran relaciones importantes precisamente porque atienden a propiedades que consideramos esenciales de las mismas. Dichas relaciones inducen clases de equivalencia dentro de las cuales todos los objetos están “emparentados”, y estudiamos el conjunto cociente de clases obtenido. Ese es el esquema esencial de clasificación en matemáticas, si bien su aplicación práctica puede variar, y así se han establecido clasificaciones para los grupos simples finitos, para las superficies en R n , las formas cuadráticas, los grupos de Lie, etc, etc.

La relación más habitual que se emplea en topología es la relación “ser homeomorfo” . Pocas veces se ha escondido detrás de una palabra tan fea un concepto tan bello. Dado un espacio de trabajo X, dos objetos A y B de dicho espacio (dos subconjuntos de “puntos” de X) son homeomorfos si pueden transformarse el uno en el otro mediante una transformación continua especial llamada homeomorfismo. Diremos que una aplicación de A a B es un homeomorfismo si es biyectiva, continua e inversible, siendo su inversa igualmente continua. Dado que si A y B son homeomorfos, entonces para un topólogo “son” esencialmente el mismo objeto, se comprende la importancia de la clasificación atendiendo a tal concepto.

Pues bien; la capacidad simplificatoria de este procedimiento es impresionante: al tratar a todos los objetos de cada clase como uno sólo (su representante canónico), obtenemos un panorama mucho más racional del universo que estamos estudiando. Es de esperar (de hecho, está asegurado) que todos los objetos de una misma clase de homeomorfia exhiban las mismas propiedades topológicas.

El problema es que lo que vale para un espacio topológico no tiene porqué valer para otro. Dado que un espacio de tres dimensiones no es homeomorfo a uno de siete, cabe esperar que ciertas cosas (cosas topológicas, entiéndanme) que ocurran en un universo de tres dimensiones no ocurrirán o al menos no tienen porqué ocurrir en otro de siete, y viceversa. Y aquí está el quid de la cuestión en lo que a la Conjetura de Poincaré se refiere.

Pero vayamos con calma.

Consideremos una esfera. Es muy importante explicar que entendemos que una esfera es el conjunto de puntos del espacio que equidistan de otro, llamado centro. Esto viene a cuento porque con esta definición una esfera es una superficie. No una bola maciza sino la superficie que la delimita. Esto es básico para entender lo que sigue. Para dejar más claro el asunto, la llamaremos 2-esfera por ser un objeto bidimensional, aunque esté inmerso en un espacio de tres dimensiones.


Todo objeto homeomorfo (topológicamente equivalente) a una esfera tendrá las mismas propiedades topológicas que una esfera; esto es una perogrullada. Lo que no lo es es preguntarse si una determinada colección de propiedades de la esfera es una caracterización topológica de la misma. Esto no es nada trivial. Y de eso va la conjetura.

Una caracterización es un conjunto de propiedades que definen sin ambigüedad un objeto. Tres propiedades topológicas son importantes en una esfera:

1.- Es compacta
2.- Es orientable
3.- Es simplemente conexa

Hace mucho tiempo que quedó claro que este conjunto de tres propiedades es una caracterización de una 2-esfera, pero ¿qué ocurre en dimensiones superiores?

Una 3-esfera NO ES una esfera maciza, como alguno podría pensar. Una 3-esfera es una variedad diferenciable de tres dimensiones, que podemos definir como el conjunto de los 4-puntos de R4 que equidistan de uno dado (centro). Es una 3-variedad inmersa en un espacio de 4 dimensiones, por tanto.

Pues bien; ¿sigue siendo el conjunto de las tres propiedades una caracterización de las 3-esferas?

La Conjetura de Poincaré afirma que para cualquier número de dimensiones el conjunto de las tres propiedades es en efecto una caracterización de las n-esferas.

Y eso es lo que ha debido conseguir el bueno de Grigory Perelman.

Por cierto, el lector atento, aunque sin conocimientos matemáticos previos podrá seguramente responder la siguiente pregunta: si una 2-esfera es o que todos conocemos como una esfera (tan sólo la superficie esférica), ¿qué cosa es una 1-esfera? ¿y una 0-esfera?

31/08/2006 14:53 tiopetrus #. sin tema



Una cosa queda clara...
WAAAAAAAAAAAAAAAASA

2 comentarios:

Anónimo dijo...

se podra sacar la ecuacion de un pedo? hay que saber que los pedos son de diversas formas aqui dejo algunos.pedo senil, se lo tiran las viejas a primera hora del dia en la iglesia y despues tosen un poquito pa disimular. pedo mulligan, es el que se tiran los golfistas en el tee del 1. pedo cineasta, parece venir arrastrandose por el suelo y trepar por las piernas hasta que llega a las narices.no hay defensa. cuando se enciende la luz miramos con odio a todos nuestros vecinos de butacas. pedos fallidos o bufas, muy traidores, no avisan. dejan una estela larguisima y se esta oliendo durante un cuarto de hora o mas. este pedo deberia tener pena judicial. pedo con rabo, es el que empieza fino y termina con porra, huele mal. fdo. demoño rojo.

pfffffff dijo...

Pedo x Pedo = Calzoncillomarrón al cuadrado por la función Y.
Viene en el teorema de Zurraspovs.